首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機(jī)器人知識 > 醫(yī)院候診區(qū)流感性疾病的非接觸式綜合檢測平臺  
 

醫(yī)院候診區(qū)流感性疾病的非接觸式綜合檢測平臺

來源:CAAI認(rèn)知系統(tǒng)與信息處理專委會      編輯:創(chuàng)澤      時間:2020/6/5      主題:其他   [加盟]
流感是一種傳染性呼吸道病毒性疾病,會引發(fā)急性疾病,通常會影響患者的鼻子、喉嚨和肺部。疾病控制和預(yù)防中心(CDC)估計(jì),在美國,每個季節(jié)有400-2300萬人感染流感,并且會導(dǎo)致1.2-7.9萬人死亡[1],這嚴(yán)重影響了美國的經(jīng)濟(jì)。疾病控制和預(yù)防中心(CDC)當(dāng)前的流感監(jiān)測和預(yù)測主要來自于國家級公共衛(wèi)生機(jī)構(gòu)的“流感樣疾病”報(bào)告,在整個傳播季節(jié),疾病控制和預(yù)防中心每周都會監(jiān)測各個州和區(qū)的流感病毒發(fā)展程度。然而,這些現(xiàn)有監(jiān)視系統(tǒng)存在幾個問題[2]。例如,常規(guī)門診的就診報(bào)告在就診后7-14天會提供給人們,在節(jié)假日期間時間會更長,這主要是由于病毒學(xué)檢測方法和醫(yī)院患者報(bào)告處理需要相當(dāng)長的一段時間。這段時間是對公共衛(wèi)生的一大威脅,因?yàn)樵诖似陂g,流行病可能在未被發(fā)現(xiàn)的情況下迅速傳播。


最近,為了解決傳統(tǒng)流行病學(xué)監(jiān)測數(shù)據(jù)的不足,越來越多的研究將非傳統(tǒng)數(shù)據(jù)來源納入傳染病預(yù)測中。這些來源包括氣候數(shù)據(jù)[3]、社交媒體[4]、互聯(lián)網(wǎng)搜索[5]、衛(wèi)星圖像[6]和智能手機(jī)數(shù)據(jù)[7]。對于基于互聯(lián)網(wǎng)的數(shù)據(jù)源,尚不清楚觀察到的“數(shù)據(jù)”在多大程度上反映了實(shí)際發(fā)病率的變化。例如,Google Flu Trends(GFT)在2012-13年流感季節(jié)期間,因高估了預(yù)測值而受到了外界的嚴(yán)厲批評[8]。這些非傳統(tǒng)的數(shù)據(jù)來源雖然展示了一些前景,但其內(nèi)在的局限性在于它們不能直接測量生物學(xué)信號或相關(guān)的身體癥狀。如果假設(shè)流感流行軌跡(圖1),在感染后1-3天內(nèi)會出現(xiàn)各種癥狀,包括咳嗽、發(fā)燒(常常伴有寒顫)、咽喉痛和鼻腔癥狀,這些患者中有相當(dāng)大一部分可能會在癥狀發(fā)作后的2-4天內(nèi)前往醫(yī)療點(diǎn)治療。本研究旨在開發(fā)和驗(yàn)證一種新型監(jiān)測系統(tǒng),該系統(tǒng)可在醫(yī)院候診區(qū)內(nèi)捕獲與流感樣疾病(ILI)的身體癥狀直接相關(guān)的生物臨床信號。


近期發(fā)表的論文“FluSense: A Contactless Syndromic SurveillancePlatform for Influenza-Like Illness in Hospital Waiting Areas”記錄了檢測平臺FluSense在大學(xué)醫(yī)療系統(tǒng)中的部署情況。呼吸道感染的常見癥狀包括鼻塞和流鼻涕、喉嚨痛、聲音嘶啞和咳嗽[9]。當(dāng)流感在人群中傳播時,流感患者通常在初次感染后48小時內(nèi)出現(xiàn)咳嗽癥狀。最近的一項(xiàng)研究發(fā)現(xiàn),流感感染的最佳多變量預(yù)測因子是咳嗽和發(fā)燒,個體水平的陽性預(yù)測值為79%(p <0.001)[10]。論文作者們發(fā)現(xiàn),每天的總咳嗽次數(shù)與校園內(nèi)實(shí)驗(yàn)室確診的流感感染表現(xiàn)出很強(qiáng)的相關(guān)性。此外,與神經(jīng)網(wǎng)絡(luò)模型相結(jié)合的熱成像攝像機(jī)圖像能夠準(zhǔn)確地估計(jì)每天在診所就診的患者總數(shù),然后用這些圖像來量化發(fā)病率,這對于統(tǒng)計(jì)每日的“流感樣疾病”病例數(shù)和確診的流感病例數(shù)很有幫助。這項(xiàng)研究為這個新技術(shù)平臺提供了重要的驗(yàn)證數(shù)據(jù),并強(qiáng)調(diào)了大規(guī)模部署(即在醫(yī)院候診室以外)的重要性,以尋求切實(shí)可行的公共衛(wèi)生應(yīng)對措施。


FluSense檢測數(shù)據(jù)捕獲的早期癥狀相關(guān)信息可以為當(dāng)前的流感預(yù)測工作提供有價值的信息。圖1說明了這種FluSense檢測如何能夠在最短時間內(nèi)捕獲與流感相關(guān)的早期癥狀。此外,該系統(tǒng)的總體目的是捕獲臨床環(huán)境之外的數(shù)據(jù),以估計(jì)普通人群中的感染情況。FluSense平臺在處理麥克風(fēng)陣列和熱成像數(shù)據(jù)使用樹莓派和神經(jīng)計(jì)算引擎,同時不存儲任何個人身份信息。它能夠?qū)崟r運(yùn)行基于深度學(xué)習(xí)的聲學(xué)模型和基于熱成像的人群密度估計(jì)算法。該文作者實(shí)施了一項(xiàng)嚴(yán)格的實(shí)地研究,在擁有30000多名學(xué)生的馬斯·薩克塞茨·阿默斯特大學(xué)的四個公共候診室部署了FluSense。在這次部署中,收集了350多人,來自醫(yī)院候診室的350000張候診室熱圖像和21230450個非語音音頻片段。論文對這些音頻片段和熱圖像庫進(jìn)行了部分注釋,以便為社區(qū)公共衛(wèi)生、計(jì)算機(jī)和信息科學(xué)應(yīng)用提供豐富的數(shù)據(jù)集。

 

2、相關(guān)工作

2.1 基于人口水平信息的流感預(yù)測

準(zhǔn)確實(shí)時預(yù)測傳染病暴發(fā)對醫(yī)務(wù)工作者、公共衛(wèi)生專業(yè)人員至關(guān)重要,因?yàn)樗梢詾椴∏檫M(jìn)行有針對性的預(yù)防和干預(yù)。目前的傳染病預(yù)測工作依賴于統(tǒng)計(jì)模型來預(yù)測病情的發(fā)展,如某一周的發(fā)病率或一個季度的累計(jì)發(fā)病率。就流感而言,這些模型依賴于公共衛(wèi)生組織ILI檢測的流行病學(xué)數(shù)據(jù),這些數(shù)據(jù)具有很大的局限性,包括在收集臨床數(shù)據(jù)與隨后獲得流感預(yù)測之間時間上的滯后。


如上所述,為解決傳統(tǒng)流行病學(xué)檢測技術(shù)的缺點(diǎn),研究人員引入了新的數(shù)字?jǐn)?shù)據(jù)流,包括氣候數(shù)據(jù),社交媒體[4][11]和互聯(lián)網(wǎng)搜索[3][12]衛(wèi)星圖像[6]和智能手機(jī)數(shù)據(jù)[7]用于ILI建模。但它們本身具有局限性,因?yàn)樗鼈儾荒苤苯佑^測感染過程和癥狀。的方法通過使用非接觸式檢測系統(tǒng)直接從人群(即醫(yī)院候診室人群)中捕獲ILI身體的癥狀,然后根據(jù)信息確定ILI的嚴(yán)重性,從而避開了這些問題。


2.2 咳嗽建模

最近的一些研究探索了基于聲音的咳嗽識別算法。例如,Mel-frequency cepstral coefficient (MFCC)和Hidden Markov Model (HMM)被用來訓(xùn)練咳嗽識別模型[13][14][15]。Larson等人、Amoh和Odame利用基于譜圖的特征訓(xùn)練咳嗽識別模型[16][17]。最近,在此基礎(chǔ)上也探索了不同的卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu)[16]。但現(xiàn)有方法存在一些局限性,限制了這些模型在公共衛(wèi)生應(yīng)用中有效的使用。例如,在這些研究中使用的測試數(shù)據(jù)在參與者的規(guī)模和多樣性方面相當(dāng)有限。參與測試的人數(shù)少于20人,并且咳嗽數(shù)據(jù)僅從特定患者人群(例如哮喘患者)中收集。在這項(xiàng)工作中已經(jīng)編譯并標(biāo)記了一個大型音頻數(shù)據(jù)集,該數(shù)據(jù)集由不同的上呼吸道異常聲音組成,包括咳嗽,打噴嚏和清嗓?傮w而言,已對大約170小時的音頻數(shù)據(jù)進(jìn)行了人工分類,其中包括來自不同聲學(xué)環(huán)境中各種個體的咳嗽情況。此外,已經(jīng)使用不同的增強(qiáng)技術(shù)(模擬不同的場景)即考慮到不同的背景噪音和室內(nèi)聲學(xué),嚴(yán)格評估了這些咳嗽模型的性能。最后,在為期7個月的臨床部署研究中,收集了超過21,000,000個非語音音頻片段,其中包括四個醫(yī)院候診室實(shí)際咳嗽的聲音。

 

3、FLUSENSE:非接觸式檢測平臺

非接觸式檢測平臺FluSense由麥克風(fēng)陣列和熱成像攝像機(jī)組成,用于捕捉不同的候診室人群行為,包括咳嗽和語言活動以及候診室病人數(shù)量(圖2)。Flusense平臺由多個模塊組成,包括:ReSpeaker麥克風(fēng)陣列(2.0版)[18]:帶有4個麥克風(fēng)和內(nèi)置高性能芯片組的麥克風(fēng)陣列;Seek CompactPRO[19]:一款熱成像相機(jī),能夠捕獲320*240像素分辨率和32度視野的熱圖像。Intel神經(jīng)計(jì)算棒[20]:一個使用Intel Movidius Myriad X Vision Processing Unit (VPU)的計(jì)算硬件,用于在邊緣上高效部署深度學(xué)習(xí)模型;樹莓派:一個控制平臺,用于同步所有附加的傳感器和設(shè)備。


3.1 音頻處理

為確保醫(yī)院候診區(qū)的隱私,所有音頻數(shù)據(jù)在采集原始音頻信號時被立即實(shí)時處理為1秒的數(shù)據(jù)塊。然后,針對語音和咳嗽的高保真二進(jìn)制分類器對每1秒的音頻塊進(jìn)行分類。如果在1秒的音頻片段中檢測到任何類似語音聲音,則不會保留音頻數(shù)據(jù)。FluSense還使用兩級加密將所有非語音片段存儲到本地硬盤上。


3.2 熱成像

使用低成本的Seek CompactPRO熱成像相機(jī),每分鐘收集一次熱圖像,然后將圖像以兩級加密的方式存儲在本地硬盤上。

 

4、臨床試驗(yàn)研究

IRB批準(zhǔn)的非接觸式移動傳感和邊緣計(jì)算平臺(如圖2所示)對大學(xué)衛(wèi)生服務(wù)四個公共候診區(qū)的所有人員(包括病人、病人陪護(hù)、候診室服務(wù)員)進(jìn)行匿名數(shù)據(jù)收集。圖3展示了醫(yī)院內(nèi)的三個候診區(qū)以及在這些空間中部署FLUSENSE的概覽。信息標(biāo)語牌也放置在傳感器旁邊,以向公眾提供有關(guān)該研究的更多信息。


5、結(jié)果分析

這項(xiàng)工作已經(jīng)證明,在醫(yī)院候診區(qū)捕捉到咳嗽聲音提供了有關(guān)流感趨勢的重要流行病學(xué)信息。這驗(yàn)證了FluSense平臺可以用于常規(guī)公共衛(wèi)生監(jiān)測。提供的結(jié)果還表明,與單純的患者計(jì)數(shù)相比,諸如咳嗽計(jì)數(shù),以言語活動次數(shù)表示的咳嗽次數(shù)和以人次計(jì)數(shù)的咳嗽次數(shù)等特征可以更好地預(yù)測流感疾病和流感患者的總數(shù)。其次,還展示了低成本,高效率的邊緣計(jì)算平臺,可以在嘈雜的環(huán)境中捕獲咳嗽聲音和潛在患者的同時確保個人隱私。綜上所述,這些發(fā)現(xiàn)說明了這種邊緣計(jì)算傳感器平臺可用于提高當(dāng)前流感樣疾病預(yù)測模型的及時性和有效性。

 

在這項(xiàng)工作中,得流感樣疾病患者計(jì)數(shù)和流感陽性患者計(jì)數(shù)的非接觸式傳感平臺已經(jīng)在一所大學(xué)衛(wèi)生診所/醫(yī)院的幾個候診區(qū)中得到驗(yàn)證。然而,認(rèn)為的技術(shù)可以適用于不同的公共場所。實(shí)驗(yàn)結(jié)果證明了基于音頻的咳嗽模型在不同的噪聲環(huán)境下表現(xiàn)良好。例如,通過不同的增強(qiáng)技術(shù)模擬不同類型的真實(shí)場景,總的來說,這些結(jié)果表明的咳嗽分類模型可以在擁擠的公共場所(包括餐廳、學(xué)校的大教室、公共辦公室、火車站或公共汽車站)實(shí)現(xiàn)良好的性能。


這種FluSense傳感器陣列也存在很多局限性。該系統(tǒng)設(shè)計(jì)用于在邊緣上運(yùn)行所有機(jī)器學(xué)習(xí)計(jì)算,因此受到邊緣計(jì)算設(shè)備的計(jì)算能力、內(nèi)存等限制。但是,隨著邊緣計(jì)算設(shè)備功能的迅速提高,這種情況會有所改善,并且預(yù)計(jì)在聲音捕獲時會運(yùn)行更復(fù)雜的模型。使用的熱成像相機(jī)也有局限性,因?yàn)樗且环N視野有限的低分辨率相機(jī)。在最初的計(jì)劃階段,探索了其他具有更高分辨率、廣角和非常精確的具有皮膚溫度測量能力的熱成像相機(jī)。但是發(fā)現(xiàn)它們非常昂貴,不適合低成本的移動部署設(shè)置。在本文中,證明了即使使用低成本的熱像機(jī),也可以從根據(jù)熱圖像估算的personTime特征中準(zhǔn)確估算出整個候診室的患者人數(shù)。優(yōu)化FluSense傳感器的部署位置是下一步的關(guān)鍵。設(shè)備位置應(yīng)仔細(xì)選擇,以捕捉具有高度ILI癥狀可能性的人群。公眾對這類設(shè)備的看法可能令人擔(dān)憂,一些人可能會認(rèn)為部署這類設(shè)備是對他們隱私的侵犯。雖然從衛(wèi)生機(jī)構(gòu)收集了數(shù)據(jù),但的結(jié)果證明了這個平臺可以用于常規(guī)綜合征監(jiān)測。此外,需要在不同的季節(jié)進(jìn)行長期研究,并在更具聲學(xué)和流行病學(xué)多樣性的環(huán)境中進(jìn)行全面驗(yàn)證。

 

在現(xiàn)實(shí)世界環(huán)境中部署計(jì)算平臺的主要挑戰(zhàn)之一是在計(jì)算能力、大小、預(yù)算和不易于部署的約束下有效地分析各種噪聲信號集。借助的FluSense平臺,開發(fā)了一個系統(tǒng),可以使用低成本的邊緣計(jì)算平臺收集具有代表性和可操作性的公共衛(wèi)生數(shù)據(jù)。對于這個FluSense平臺,開發(fā)了音頻和圖像識別模型,這些模型隨后在實(shí)際環(huán)境中得到驗(yàn)證,并可以部署在邊緣計(jì)算設(shè)備上。此外,已經(jīng)證明,基于的傳感器數(shù)據(jù),可以預(yù)測具有0.65相關(guān)系數(shù)的總流感疾病患者人數(shù),同時預(yù)測總流感陽性患者(相關(guān)系數(shù)= 0.61),這說明FluSense為季節(jié)性流感監(jiān)測和預(yù)測提供了新的有用信號。





大阪大學(xué)胡正濤博士(萬偉偉老師團(tuán)隊(duì))為機(jī)器人開發(fā)通用工具解決復(fù)雜變種變量的操作任務(wù)

通過機(jī)械機(jī)構(gòu)實(shí)現(xiàn)機(jī)械手到工具的動力傳遞,無需外部控制及供能,對機(jī)器人的避障路徑規(guī)劃影響極小

深度學(xué)習(xí)的可解釋性研究(三)——是誰在撩動琴弦

神經(jīng)網(wǎng)絡(luò)的敏感性分析方法可以分為變量敏感性分析、樣本敏感性分析兩種,變量敏感性分析用來檢驗(yàn)輸入屬性變量對模型的影響程度,樣本敏感性分析用來研究具體樣本對模型的重要程度

深度學(xué)習(xí)的可解釋性研究(二)——不如打開箱子看一看

神經(jīng)網(wǎng)絡(luò)模型本身其實(shí)并不是一個黑箱,其黑箱性在于我們沒辦法用人類可以理解的方式理解模型的具體含義和行為

深度學(xué)習(xí)的可解釋性研究(一)— 讓模型具備說人話的能力

為決策樹模型是一個具有比較好的可解釋性的模型,以決策樹為代表的規(guī)則模型在可解釋性研究方面起到了非常關(guān)鍵的作用

不完美場景下的神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法

騰訊優(yōu)圖實(shí)驗(yàn)室高級研究員Louis在分享了自適應(yīng)缺陷數(shù)據(jù),業(yè)務(wù)場景下的神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法

AI在COVID-19診斷成像中的應(yīng)用

人工智能技術(shù)支持的圖像采集可以顯著幫助掃描過程實(shí)現(xiàn)自動化,還可以重塑工作流程,最大限度地減少與患者的接觸,為成像技術(shù)人員提供最佳保護(hù)

國內(nèi)外舵機(jī)參數(shù)性能價格比較

舵機(jī)是步態(tài)服務(wù)機(jī)器人的核心零部件和成本構(gòu)成,是包含電機(jī)、傳感器、控制器、減速器等單元的機(jī)電一體化元器件

SLAM與V-SLAM特征對比

基于激 光雷達(dá)的SLAM(激光SLAM)和基于視覺的SLAM(V-SLAM)。激光SLAM目前發(fā)展比較成熟、應(yīng)用廣泛,未來多傳感器融合的SLAM 技術(shù)將逐漸成為技術(shù)趨勢,取長補(bǔ)短,更好地實(shí)現(xiàn)定位導(dǎo)航。

《視覺SLAM十四講》作者高翔:非結(jié)構(gòu)化道路激光SLAM中的挑戰(zhàn)

SLAM階段:解決從原始傳感器數(shù)據(jù)開始,構(gòu)建某種基礎(chǔ)地圖的過程,標(biāo)注階段:在SLAM結(jié)果基礎(chǔ)上進(jìn)行人為標(biāo)注,實(shí)現(xiàn)更精細(xì)的交通規(guī)則控制

圖像檢索入門、特征和案例

圖像檢索是計(jì)算機(jī)視覺中基礎(chǔ)的應(yīng)用,可分為文字搜圖和以圖搜圖。借助于卷積神經(jīng)網(wǎng)絡(luò)CNN強(qiáng)大的建模能力,圖像檢索的精度越發(fā)提高

如何加快解決數(shù)據(jù)產(chǎn)權(quán)問題

數(shù)據(jù)所有權(quán)方面,1原始數(shù)據(jù)屬于個人,2企業(yè)享有衍生數(shù)據(jù)所有權(quán),3政府享有政府?dāng)?shù)據(jù)的歸屬權(quán)

戴瓊海院士:搭建腦科學(xué)與人工智能的橋梁

腦科學(xué)的發(fā)展將推動人工智能科學(xué)從感知人工智能到認(rèn)知人工智能的跨越
 
資料獲取

智能導(dǎo)診機(jī)器人在醫(yī)院服務(wù)
新聞資訊
== 資訊 ==
» 人形機(jī)器人未來3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機(jī)器人上崗門診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無主燈智能化規(guī)范
» 微波雷達(dá)傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運(yùn)營體系(ML0ps)實(shí)踐指
» 四驅(qū)四轉(zhuǎn)移動機(jī)器人運(yùn)動模型及應(yīng)用分析
» 國內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場景
» 國內(nèi)科技大廠布局生成式 AI,未來有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時更短 優(yōu)
 
== 機(jī)器人推薦 ==
 
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人底盤

機(jī)器人底盤

 

商用機(jī)器人  Disinfection Robot   展廳機(jī)器人  智能垃圾站  輪式機(jī)器人底盤  迎賓機(jī)器人  移動機(jī)器人底盤  講解機(jī)器人  紫外線消毒機(jī)器人  大屏機(jī)器人  霧化消毒機(jī)器人  服務(wù)機(jī)器人底盤  智能送餐機(jī)器人  霧化消毒機(jī)  機(jī)器人OEM代工廠  消毒機(jī)器人排名  智能配送機(jī)器人  圖書館機(jī)器人  導(dǎo)引機(jī)器人  移動消毒機(jī)器人  導(dǎo)診機(jī)器人  迎賓接待機(jī)器人  前臺機(jī)器人  導(dǎo)覽機(jī)器人  酒店送物機(jī)器人  云跡科技潤機(jī)器人  云跡酒店機(jī)器人  智能導(dǎo)診機(jī)器人 
版權(quán)所有 © 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司     中國運(yùn)營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728